
Authority Server Selection of DNS Caching Resolvers

Yingdi Yu
UCLA

yingdi@cs.ucla.edu

Duane Wessels
Verisign

dwessels@verisign.com
Matt Larson

Verisign
mlarson@verisign.com

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
Operators of high-profile DNS zones utilize multiple author-
ity servers for performance and robustness. We conducted
a series of trace-driven measurements to understand how
current caching resolver implementations distribute queries
among a set of authority servers. Our results reveal areas
for improvement in the “apparently sound” server selection
schemes used by some popular implementations. In some
cases, the selection schemes lead to sub-optimal behavior
of caching resolvers, e.g. sending a significant amount of
queries to unresponsive servers. We believe that most of
these issues are caused by careless implementations, such
as keeping decreasing a server’s SRTT after the server has
been selected, treating unresponsive servers as responsive
ones, and using constant SRTT decaying factor. For the
problems identified in this work, we recommended corre-
sponding solutions.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations; C.2.4 [Computer-Communication Networks]:
Distributed Systems

General Terms
Performance, Measurement, Domain Name System

Keywords
DNS, Server Selection

1. INTRODUCTION
The Domain Name System is a fascinating, versatile, and

fundamental component of Internet communications. It is
highly distributed both in ownership and operation, used
both as a target and as a vehicle of numerous types of at-
tacks, and generally a very resilient protocol. The DNS
resolution plays a significant role in the Internet-user expe-
rience. It is often the first step in establishing a communica-
tion channel between sender and receiver. If DNS resolution
is slow or not working, we take notice.

This work is focused on the behavior of caching resolvers,
whose role is to receive queries from end user applications,
which are then resolved by querying some number of au-
thority servers. This process is also known as iteration1. As
the name implies, caching resolvers store received answers

1This process is also called “recursion” sometimes.

for future use. Cache hits obviously improve performance,
and have been intensively studied [4, 10,18].

Another way that caching resolvers improve performance
is by minimizing the iterative query delay. Many zone opera-
tors use multiple authority servers for both performance and
robustness. If the resolver can successfully predict which one
will respond in the shortest time, the delays experienced by
users can be minimized. However, simply sending all queries
to the least-latent authority server may not be the best pol-
icy. A resolver with predictable behavior is more susceptible
to Kaminsky-style cache poisoning [8].

The DNS specifications [13] are vague on server selec-
tion algorithms (“Find the best servers to ask” and “Get
the answer as quickly as possible”). However, there seems
to be consensus among implementors and users that, for a
given zone, a caching resolver should prefer the least-latent
authority server (for good response time) yet still query
the others (to distribute the load and monitor their per-
formance). Therefore, the first question we try to answer in
this paper is: Does an implementation prefer the least-latent
authority server?

We find some implementations that do not always prefer
the least-latent authority server. Some of them, as will be
discussed in Section 4.1, spread out queries evenly among
all authority servers. Others, which intend to send queries
to the least-latent server, fail to distribute queries as ex-
pected. This implies that some defects exist in server se-
lection schemes. Therefore, the second question we want to
answer is: What are those defects that make some imple-
mentations prefer servers with longer latency?

Thus far our questions assume an unchanging network.
In reality, networks are dynamic. For example, a change
in routing may increase the Round-Trip Time (RTT) to a
server, or queries to a server go unanswered for some amount
of time. Caching resolvers that can efficiently detect neg-
ative changes can avoid performance degradation. Mean-
while, caching resolvers should also be able to detect posi-
tive changes, such as when a server begins responding again,
or when latency to a server has decreased. It is generally
more difficult to detect positive changes, because larger-
latent servers are queried less frequently. Therefore, the
third question we try to answer is: Does an implementa-
tion detect network changes, especially positive changes, in
a timely manner?

To answer these three questions, we measured the server
selection schemes of six popular caching resolver implemen-
tations, including BIND 9.7 and 9.8, PowerDNS, Unbound,
dnscache and Windows DNS, under a number of different

(simulated) network scenarios. The six implementations
adopt different server selection schemes and behave differ-
ently. Some behaviors are sub-optimal, either because the
resolver sends more queries to larger-latent (or even unre-
sponsive) servers, or because positive network changes are
not detected quickly. In studying the server selection schemes,
we identified three factors responsible for these behaviors.

Contributions of our work are follows:

• We measured server selection schemes of six popu-
lar caching resolver implementations, which we believe
represents the majority resolver software currently in
use [3]. To the best of our knowledge, this paper is the
first to study DNS performance from the perspective
of authority server selection.

• We found four types of sub-optimal server selection
behaviors.

• We identified three factors responsible for these sub-
optimal behaviors, thus providing guidelines for future
work in server selection schemes. Although our work
is focused on DNS, these guidelines are also applicable
to other systems where server selection is necessary.

The rest of the paper is organized as follows. Section 2
presents background information on authority server selec-
tion. We describe the measurement testbed in Section 3.
In Section 4, we study the four types of sub-optimal server
selection behaviors. Related works are listed in Section 5,
and we conclude in Section 6.

2. AUTHORITY SERVER SELECTION
When a caching resolver needs to query a domain, it may

want to select one of the authority servers serving the do-
main for queries. Some caching resolvers may select the
least-latent authority server in order to minimize the query
delay. Some others may randomly pick a server, so that the
query load can be balanced on all authority servers. More-
over, random selection can make the behavior of these cach-
ing resolvers less predictable, thus preventing these resolvers
from malicious attacks, such as Kaminsky-style cache poi-
soning [8]. Note that even those caching resolvers which
select the least-latent server may still have to periodically
query the rest servers, in order to tell which server has the
least RTT when network is dynamically changing.

A caching resolvers usually selects an authority server in
two steps. The first step is to estimate the RTT of each au-
thority server2 based on statistics of previous queries. (If a
query times out, the value of timeout timer or a large preset
value is taken as the RTT.) In order to mitigate RTT fluctu-
ation, Smoothed RTT (SRTT), a weighted moving average
of previous queries’ RTTs, is used as the estimated RTT.

The second step is to select an authority server according
to the estimated RTT. Here, two types of selection schemes
can be applied. The first one, which we call Least SRTT
Selection, is to select the server with the least SRTT. Using
this scheme alone may be problematic. For example, when
the RTT of a server changes from a large value to the mini-
mum one, the server can be selected only after its estimated
RTT is updated. However, in order to get the latest RTT,
the server has to be queried at first. As a result of deadlock,

2Without explicit note, authority servers in this paper serve
the same domain.

Root$

13$servers$

SLD$

��$
.com$ Network$$

Emulator$

Caching$
Resolver$

Trace$
Replayer$

Figure 1: Testbed structure. The trace replayer sends out
requests of name lookups. Some lookups may trigger the
caching resolver to iteratively query the DNS infrastructure.
Queries to the TLD servers experience delay and packet loss
created by network emulator.

this server may be never selected. Therefore, SRTT decay-
ing is used to force a caching resolver to poll each authority
server periodically. SRTT decaying is a mechanism that de-
creases the SRTT of unselected servers by a factor β < 1
when a response arrives.

The decaying factor β can be constant or exponentially-
decreasing. For example, BIND [2] uses a constant β = 0.98,
while PowerDNS [1] adopts an exponentially-decreasing one:

βn = e
tn−tn+1

C (1)

where tn and tn+1 are timestamps of two consecutive re-
sponses, and C is a constant.

A constant β couples SRTT decaying and the iterative
query rate. SRTT decays more quickly when the itera-
tive query rate is higher. An exponentially-decreasing β,
however, decouples SRTT decaying from the query rate.
Consider, for example, two query traces covering the same
amount of time (t1, t2). One contains two queries which ar-
rive at t1, t2 respectively, while the other one contains three
queries which arrive at t1, t′, t2. The decaying ratio of the
first trace is

e
t1−t2

C .

For the second trace, it is

e
t1−t′

C · e
t′−t2

C = e
t1−t2

C .

Decaying ratios of both traces are equivalent, and are only
determined by constant C.

The other selection scheme is called Statistical Selection.
This scheme selects a server with a probability which is a
function of the server’s SRTT. In this way, even the server
with the largest SRTT can be selected for some queries,
though its being-selected probability may be very small.

3. MEASUREMENT TESTBED
Our measurement is a trace-driven study, and is con-

ducted in an isolated environment. As shown in Figure 1,
our testbed consists of four components: a DNS infrastruc-
ture, a network emulator, a caching resolver, and a program
that replays lookup traces.

Authority server selection is only meaningful when servers
support the same domain. In our testbed, “.com” is chosen
as the target domain for the convenience of collecting a large

Scenario ID Description

Scenario 1 RTTs of authority servers range linearly
(10ms) from the first one (50ms) to the
last one (170ms).

Scenario 2 A variant of Scenario 1, where the first
authority server is unresponsive (100%
packet loss ratio).

Scenario 3 A variant of Scenario 2, where the unre-
sponsive authority server recovers after 5
minutes.

Table 1: Measurement Scenarios

enough DNS lookup trace. The tested “.com” domain is
served by 13 authority servers. A root zone server is setup
to respond with referrals to the “.com” servers. Another
server is setup with wildcards [13], so that it can serve all
the Second Level Domains (SLDs) under “.com”, and termi-
nates all DNS lookups. In order to eliminate differences in
measurement results caused by cache ejection and refresh in
measurement, the TTL of all DNS resource records and the
size of the resolver’s cache are set to large enough values.
We have to point out that shorter TTL and smaller cache
only lead to more overall queries, but do not directly affect
server selection.

A network emulator that can adjust packet delay and loss
ratio is placed between the caching resolver and the “.com”
servers. Using this emulator, we model several network sce-
narios to measure different aspects of server selection. In
this paper we discuss the three scenarios listed in Table 1.
The purpose of Scenario 1 is to measure how a caching re-
solver distributes queries among authority servers with dif-
ferent RTTs. The purpose of Scenario 2 is to see whether a
caching resolver can detect an unresponsive server and avoid
querying it. The purpose of Scenario 3 is to measure how
long it takes a resolver to detect the recovery of an unre-
sponsive server and select it again.

The DNS lookup trace is from a 10-minute log of a resolver
of a large U.S. ISP. It consists of approximately 3.5 mil-
lion lookups for 408,808 unique DNS names (all ending with
“.com”) belonging to 154,165 SLDs. Assuming no packets
are lost and all DNS records stay in cache once they have
been fetched, the average rate at which a caching resolver
queries the tested “.com” domain is about 250 queries per
second.

We measure six widely used implementations of caching
resolvers3 as listed in Table 2. We capture iterative query
traces at the caching resolver side. All of the analysis in this
paper is based on these captured traces.

4. MEASUREMENT RESULTS
We find four types of sub-optimal server selection behav-

ior in the captured query traces. Two of them are found
in Scenario 1: RTT-insensitive server selection (i.e., select-
ing a server regardless of its RTT) and RTT-proportional
server selection (i.e., sending more queries to larger-latent
servers). Another type is found in Scenario 2: Unrespon-
sive server blackhole (i.e., sending a significant amount of

3Nominum DNS was unavailable to us, and was not mea-
sured.

Caching Resolver Version

BIND 9.8.0, 9.7.3
PowerDNS 3.1.5
Unbound 1.4.10

DNSCache 1.05
WindowsDNS 6.1 (Windows Server 2008)

Table 2: Caching resolvers measured and their versions

rttmin

t1 t2 t3 t4 !me$

SRTT$

rtts
SRTTofNSs

Decaying$ Being2Selected$ Increasing$ Decaying$

Figure 3: The SRTT variation of an example server nse in
BIND 9.8. The four solid bars represent four queries to nse.
nse is selected when its SRTT is less than rrtmin.

queries to unresponsive servers). The last type is found in
Scenario 3: Slow reaction to positive changes (e.g., a server
recovers from unresponsive status). In this section, we dis-
cuss the consequences and explain the reasons for each type
of behavior.

4.1 RTT-Insensitive Server Selection
We find that three implementations (DNSCache, Unbound,

and Windows DNS) distribute queries evenly among all the
authority servers. Two reasons can account for this behav-
ior. First, some caching resolvers do not estimate the RTT
of authority servers (e.g., DNSCache). Second, some cach-
ing resolvers only use the estimated RTT to rule out under-
qualified servers, rather than to select the least-latent server.
For example, Unbound randomly selects among servers with
the SRTT less than 400ms.

Due to sending a considerable amount of queries to larger-
latent servers, the RTT-insensitive server selection scheme
inevitably increases average query delay. This can become
more obvious if most of the servers have larger RTTs. And
such situations are not rare on the Internet.

4.2 RTT-Proportional Server Selection
We find that BIND 9.8 send more queries to larger-latent

authority servers in Scenario 14 as shown in Figure 2a. We
call this type of behavior as RTT-proportional server selec-
tion. However, BIND 9.8 is implemented with the Least-
SRTT Selection scheme, and should select the server with
the least SRTT, yet our data indicates otherwise. To un-
derstand the reasons for this behavior, we investigate the
process of server selection inside BIND 9.8.

Consider a domain that is served by n authority servers.
We use one of them, nse (1 ≤ e ≤ n), as an example to de-
scribe how an authority server is selected by BIND 9.8. Fig-

4ISC has been notified about this issue.

Name server indexed by RTT(ms)
50 60 70 80 90 100 110 120 130 140 150 160 170

Q
ue

rie
s

re
ce

iv
ed

 (%
)

0

3

6

9

12

(a)

Name server indexed by RTT(ms)
50 60 70 80 90 100 110 120 130 140 150 160 170

Q
ue

rie
s

re
ce

iv
ed

 (%
)

0

3

6

9

12

(b)

Name server indexed by RTT(ms)
50 60 70 80 90 100 110 120 130 140 150 160 170

Q
ue

rie
s

re
ce

iv
ed

 (%
)

0

20

40

60

80

100

(c)

Figure 2: Query distributions in Scenario 1: (a) BIND 9.8; (b) BIND 9.8 with 1/10 query rate; (c) PowerDNS.

ure 3 illustrates the SRTT variation of nse in BIND 9.8. As
can be seen, such variation is periodical, and can be divided
into three phases: decaying, being-selected and increasing.

A decaying phase starts when the last response from nse
is received by BIND 9.8 at t1. In this phase, since nse is not
selected, all received responses are from the other servers.
As a result of SRTT decaying, these responses make the
SRTT of nse decrease. Eventually, the SRTT of nse becomes
the minimum one at t2, and the decaying phase ends.

The being-selected phase is next to the decaying phase. In
this phase, although nse has been selected, some responses
to queries sent before t2 are still in flight. When these out-
standing responses are received by BIND 9.8, the SRTT of
nse continues to decrease until the first response from nse
is received. The being-selected phase ends at t3 when the
SRTT of nse is no longer the minimum one. As the SRTT of
nse is always the minimum one in the being-selected phase,
all the queries are sent to it in this phase. If nse has a large
RTT, its SRTT may not be the minimum one after having
been updated by the first response from nse. Therefore, the
being-selected phase usually lasts for only one RTT.

The increasing phase is next to the being-selected phase.
In this phase, all the received responses are from nse, except
those repsonding to queries sent after t3. The SRTT of nse
may continue increasing until t4 when the last response from
nse is received, which also indicates the beginning of the
next decaying phase.

Note that nse can be selected only in the being-selected
phase during an SRTT variation period, and that once nse
has been selected it continues being selected for one RTT.
Therefore, the percentage of queries sent to nse is:

pnse =
Pe · tsele∑n

i=1(Pi · tseli)
(2)

where tseli is the length of the being-selected phase of au-
thority server nsi, and Pi is the probability with which the
SRTT of nsi is the minimum one. When decaying phase is
long enough, Pi can be approximated as:

Pi ≈
tseli

tdeci + tseli + tinci

(3)

where tdeci denotes the length of the decaying phase of au-
thority server nsi, and tinci for the length of the server’s
increasing phase.

An authority server with a long RTT usually has a long
decaying phase. According to (3), such a server can be se-

lected with a small probability. Although this server may
be queried for a long RTT, the total percentage of queries
sent to it is still small according to (2).

If the decaying phase is very short (e.g., when SRTT de-
cays very quickly), formula (3) can not reflect the being-
selected probability accurately any more. However, this for-
mula still provides some useful implication. Note that both
of tsel and tinc are approximately equal to the server’s RTT.
When tseli approaches to zero, Pi in formula (3) is approx-
imately equal to 0.5. This implies that all the authority
servers have almost the same probability to become the one
with the minimum SRTT if SRTT decays very quickly. As-
sume that each authority server has the same Pi, an RTT-
proportional query distribution can be obtained from (2).

In order to validate our speculation that RTT-proportional
server selection is caused by fast SRTT decaying, we con-
duct another experiment. As we mentioned in Section 2,
if a constant decaying factor is used, SRTT decays slower
when the iterative query rate is lower. Given BIND uses a
constant decaying factor (β = 0.98), we slow SRTT decay-
ing by replaying DNS lookup trace at 1/10 of the original
speed, and measure the query distribution again. As shown
in Figure 2b, although many queries are still sent to large-
latent servers, the least-latent server now receives the most
queries.

As a result of coupling SRTT decaying and the itera-
tive query rate, the RTT-proportional server selection most
probably happens when a popular domain is queried by a
caching resolver that serves many end users. Although only
a few domain-resolver pairs satisfy this condition, the num-
ber of the affected end users and the importance of the af-
fected domains should not be underestimated.

An exponential decreasing factor, used by PowerDNS, can
decouple SRTT decaying and the average query rate. With
a large constant C in (1), SRTT decays very slowly in Pow-
erDNS (it takes 42 seconds for SRTT to decay to a half).
As a result, more than 99% of queries are sent to the least-
latent server, as represented by the spike in Figure 2c. How-
ever, we have to point out that slow SRTT decaying does
not avoid sending queries to large-latent server for one RTT
periodicaly.

Unlike caching resolvers discussed above, BIND 9.7 selects
an authority server based on an SRTT-related probability.
As a result, no authority servers can be continuously selected
for a long time. The query distribution in BIND 9.7 in Fig-
ure 4 can reflect to some degree the difference in authority

Name server indexed by RTT(ms)
50 60 70 80 90 100 110 120 130 140 150 160 170

Q
ue

rie
s

re
ce

iv
ed

 (%
)

0

5

10

15

20

Figure 4: Query distribution of BIND 9.7 in Scenario 1

servers’ RTTs, However, as SRTT decaying is still used in
BIND 9.7, the SRTT of a large-latent server is less than its
real RTT if the iterative query rate is higher. Therefore, a
considerable amount of queries are still sent to large-latent
servers. As can be seen in Figure 4, all servers receive at
least 7% of queries.

4.3 Unresponsive Server Blackhole
We find that two implementations (BIND and DNSCache)

send a significant number of queries to the unresponsive
server in Scenario 2. A queriy sent to an unresponsive server
times out in the end, and forces a caching resolver to re-send
the query to other servers. As a result, the delay of the cor-
responding DNS lookup increases significantly. DNSCache
does not keep statistics of previous queries, thus failing to
avoid selecting unresponsive server. Therefore our analysis
is focused on BIND in this section.

As shown in Figure 5, BIND 9.8 sends 23% of queries
to the unresponsive server. BIND 9.7, whose result is not
shown here, sent 11% of queries to the unresponsive server.
The reason for this behavior is that BIND takes a timed out
query as a “responded” query with an extremely long RTT
which is equal to the value of timeout timer. According to
DNS specification [13, 14], the timeout timer should be set
to at least four seconds. Within such a long “RTT”, an
unresponsive server can force BIND to send a huge amount
of queries to it.

A desirable authority server selection should avoid such
an “unresponsive server blackhole”. Two other implemen-
tations (Unbound and WindowsDNS) achieve this goal. Un-
bound handles unresponsive and responsive servers sepa-
rately. When a server is detected as unresponsive, Unbound
periodically sends a query to probe the server until it be-
comes responsive again.

The rest caching resolver, PowerDNS, decreases SRTT
very slowly as mentioned in Section 4.2. An unresponsive
server has to wait a very long time (3 minutes) to be se-
lected. Therefore, only a few queries are sent to the unre-
sponsive server. However, as an unresponsive server is still
taken as responsive, once it is selected, PowerDNS will send
all following queries to it till the timeout timer expires. As
a result, queries to a domain with an unresponsive server
may periodically experience large delay.

4.4 Slow Reaction to Positive Changes
We list in Table 3 the time that each implementation

needs to detect the recovery of the unresponsive server. Among
them, PowerDNS and Unbound take a long time to detect
the server’s recovery. It may be acceptable that a caching

Name server indexed by RTT(ms)
Inf. 60 70 80 90 100 110 120 130 140 150 160 170

Q
ue

rie
s

re
ce

iv
ed

 (%
)

0

5

10

15

20

25

Figure 5: Query distribution of BIND 9.8 in Scenario 2. The
first authority server is unresponsive.

resolver fails to quickly detect the recovery of a large-latent
server, because most of queries are still sent to the least-
latent one. But if a caching resolver takes a long time to
detect the recovery of the least-latent server, most of queries
will be still sent to a sub-optimal server.

We attribute the slow reaction to the frequency of query-
ing (or probing) an unresponsive server. Unbound sets a
15-minute interval between two consecutive probes. This
implies that, in the worst case, it takes up to 15 minutes for
Unbound to detect the recovery of an unresponsive server.

For implementations that use least SRTT selection and
SRTT decaying, a slow SRTT decaying implies a long wait-
ing time to probe a server again. For example, PowerDNS
has to wait three minutes to re-query an unresponsive server.

Although the least SRTT selection discussed above may
react slowly to the recovery of an unresponsive server, the
SRTT of the server has already decayed to a small value
when it is selected again. In contrast, the performance of
statistical selection may be worse, because the SRTT of the
selected server may be still large when it is selected again.
Therefore, statistical selection cannot frequently query a
server with a large SRTT multiple times in a short time, it
may take a longer time to decrease the SRTT of the server
to a reasonable value.

A comprehensive comparison among different implemen-
tations is listed in Table 3.

5. RELATED WORK
Many previous efforts on server selection were focused on

web servers [5, 7, 9, 16, 19]. However, methods presented
by some work included bandwidth as one of selection cri-
teria [5, 7, 9, 16]. Unlike web servers, communication be-
tween caching resolver and authority servers consists of short
queries, therefore response time plays a more important role
in DNS server selection. Some other work used methods un-
suitable for DNS, such as application-layer anycasting [19],
or proactive probing [16].

Server selection schemes in Content Delivery Networks
(CDN) have also been studied intensively [11, 12, 15, 17].
However, server selection in CDNs is based on DNS. Author-
ity servers of CDN networks use the IP addresses of caching
resolvers to infer geolocation of users, and respond with IP
addresses of the closest server. As being strongly coupled
with DNS, these schemes are not applicable to server selec-
tion in DNS.

Studies on DNS specific server selection are limited. Deb
et al. [6] proposed a server selection algorithm which im-

Implementation Query distribution Avoid querying unre-
sponsive server

Time to detect
server recovery

BIND 9.8 Proportional to RTT (if query rate is high); Inverse
proportional to RTT (if query rate is low)

No < 1 second

BIND 9.7 Inverse proportional to RTT No < 1 second
PowerDNS Spike distribution No 3 minutes
Unbound Uniform distribution (among all authority servers with

RTT < 400ms)
Yes 15 minutes

DNSCache Uniform distribution No < 1 second
WindowsDNS Uniform distribution Yes 1 second

Table 3: Comparison of measurement results of caching resolvers on 1) Query distribution in Scenario 1, 2) Avoid querying
unresponsive server in Scenario 2, and 3) Time to detect server recovery in Scenario 3.

proves the accuracy of SRTT estimation. Their proposal as-
sumed that SRTT decaying can work as expected, but our
study shows that this assumption may not be true in some
situations. Ager et al. [4] studied the delay of DNS lookups
from two perspectives: distance between end users and cach-
ing resolvers, and the efficiency of caching. In contrast, our
work is focused on the delay between caching resolvers and
authoritative authority servers.

6. CONCLUSION
In this work, we studied how widely used DNS caching

resolvers implement authority server selection. It is the first
study that compares different implementations. We found
three issues inside some “apparently sound” server selection
schemes. First, SRTT decaying, which is used to periodi-
cally probe an authority server, should stop once the server
has been selected. Otherwise, the lasting SRTT decaying
can force a caching resolver to query the server until the
first response is received. Second, constant decaying factor
couples SRTT decaying and the iterative query rate, and
should be avoided. Otherwise, a large-latent server can be
selected with a larger probability when query rate is higher.
Last but not the least important, unresponsive authority
servers should not be handled as responsive servers with
a large RTT. Otherwise, once an unresponsive server is se-
lected, all queries will be sent to this server until the timeout
timer expires. Moreover, an unresponsive server should be
fixed as soon as possible, because it may still significantly
affect the performance of a domain even though the other
authority servers work well.

7. REFERENCES
[1] PowerDNS. http://www.powerdns.com.
[2] BIND. http://www.isc.org/software/bind.

[3] DNS Surveys.
http://dns.measurement-factory.com/surveys/.

[4] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig.
Comparing DNS resolvers in the wild. In ACM IMC, 2010.

[5] R. Carter and M. Crovella. Server selection using dynamic
path characterization in wide-area networks. In IEEE
INFOCOM, 1997.

[6] S. Deb, A. Srinivasan, and S. Pavan. An improved DNS
server selection algorithm for faster lookups. In IEEE
COMSWARE, 2008.

[7] S. Dykes, K. Robbins, and C. Jeffery. An empirical
evaluation of client-side server selection algorithms. In
IEEE INFOCOM, 2000.

[8] S. Friedl. An illustrated guide to the kaminsky dns
vulnerability. Uinxwiz. net Tech Tips, August, 2008.

[9] K. Hanna, N. Natarajan, and B. Levine. Evaluation of a
novel two-step server selection metric. In IEEE ICNP, 2001.

[10] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS
performance and the effectiveness of caching. Networking,
IEEE/ACM Transactions on, 10(5):589–603, 2002.

[11] B. Krishnamurthy, C. Wills, and Y. Zhang. On the use and
performance of content distribution networks. In ACM
SIGCOMM Workshop on Internet Measurement, 2001.

[12] R. Krishnan, H. Madhyastha, S. Srinivasan, S. Jain,
A. Krishnamurthy, T. Anderson, and J. Gao. Moving
beyond end-to-end path information to optimize CDN
performance. In ACM IMC, 2009.

[13] P. Mockapetris. Domain Names - Concepts and Facilities.
RFC 1034 (Standard), Nov. 1987.

[14] P. Mockapetris. Domain Names - Implementation and
Specification. RFC 1035 (Standard), Nov. 1987.

[15] I. Poese, B. Frank, B. Ager, G. Smaragdakis, and
A. Feldmann. Improving content delivery using
provider-aided distance information. In ACM IMC, 2010.

[16] M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek.
Selection algorithms for replicated web servers. ACM
SIGMETRICS Performance Evaluation Review,
26(3):44–50, 1998.

[17] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness
of DNS-based server selection. In IEEE INFOCOM, 2001.

[18] P. Vixie. What DNS is not. Communications of the ACM,
52(12):53–47, 2009.

[19] E. Zegura, M. Ammar, Z. Fei, and S. Bhattacharjee.
Application-layer anycasting: A server selection
architecture and use in a replicated web service.
Networking, IEEE/ACM Transactions on, 8(4):455–466,
2000.

